Frequency shift keying

Frequency shift keying#

Frequency shift keying (FSK) is a digital modulation scheme that uses two different frequencies to encode the \(0\)s and \(1\)s:

\[\begin{split} \begin{align} s_0(t) &= \cos(\omega_0 t) \\ s_1(t) &= \cos(\omega_1 t) \end{align} \end{split}\]

where \(\omega_0 \not= \omega_1\).

Minimum shift keying#

Demodulation#

The application note [Incorporated, 1998] assumes that

\[\begin{split} \begin{align} \omega_0 = \omega_c - \Delta\omega \\ \omega_1 = \omega_c + \Delta\omega \end{align} \end{split}\]

so that demodulation can happen by simply multiplying the received signal, \(r(t)\), by a delayed version of itself

\[ r(t)r(t-T) = \cos((\omega_c \pm \Delta\omega) t) \cos((\omega_c \pm \Delta\omega) (t- T) ) \]

where \(T \omega_c = \frac{\pi}{2}\) or \(T = \frac{\pi}{2\omega_c}\). That means

\[\begin{split} \begin{align} r(t)r(t-T) &= \cos((\omega_c \pm \Delta\omega) t + (\omega_c \pm \Delta\omega) (t- T) ) \cos((\omega_c \pm \Delta\omega) t - (\omega_c \pm \Delta\omega) (t- T) )\\ &= \cos(2\omega_c t \pm 2\Delta\omega t - (\omega_c \pm \Delta\omega)T) \cos( - (\omega_c \pm \Delta\omega)T ) \end{align} \end{split}\]